Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: A study of reorganized mossy fiber synapses

Author(s):  
Nianhui Zhang ◽  
Carolyn R. Houser
1997 ◽  
Vol 78 (4) ◽  
pp. 1860-1868 ◽  
Author(s):  
Michele L. Simmons ◽  
Gregory W. Terman ◽  
Charles Chavkin

Simmons, Michele L., Gregory W. Terman, and Charles Chavkin. Spontaneous excitatory currents and κ-opioid receptor inhibition in dentate gyrus are increased in the rat pilocarpine model of temporal lobe epilepsy. J. Neurophysiol. 78: 1860–1868, 1997. Temporal lobe epilepsy is associated with a characteristic pattern of synaptic reorganization in the hippocampal formation, consisting of neuronal loss and aberrant growth of mossy fiber collaterals into the dentate gyrus inner molecular layer. We have used the rat pilocarpine model of temporal lobe epilepsy to study the functional consequences of mossy fiber sprouting on excitatory activity and κ-opioid receptor-mediated inhibition. Using the whole cell voltage-clamp technique, we found that abnormal excitatory activity was evident in granule cells of the dentate gyrus from pilocarpine-treated rats. The frequency of spontaneous excitatory postsynaptic currents (EPSCs) was increased greatly in cells from tissue in which significant mossy fiber sprouting had developed. In the presence of bicuculline, giant spontaneous EPSCs, with large amplitudes and long durations, were seen only in association with mossy fiber sprouting. Giant EPSCs also could be evoked by low-intensity stimulation of the perforant path. Mossy fibers release not only excitatory amino acids, but also opioid peptides. κ-Opioid receptor-mediated inhibition in normal Sprague-Dawley rats was seen only in hippocampal sections from the ventral pole. In pilocarpine-treated rats, however, kappa receptor-mediated effects were seen in both ventral and more dorsal sections. Thus in this model of temporal lobe epilepsy, several types of abnormal excitatory activity were observed, thereby supporting the idea that mossy fiber sprouting leads to recurrent excitatory connections. At the same time, inhibition of excitatory activity by κ-opioid receptors was increased, perhaps representing an endogenous anticonvulsant mechanism.


Epilepsia ◽  
2000 ◽  
Vol 41 (s6) ◽  
pp. S24-S29 ◽  
Author(s):  
Asla Pitkanen ◽  
Jari Nissinen ◽  
Katarzyna Lukasiuk ◽  
Leena Jutila ◽  
Leo Paljarvi ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Soichiro Nakahara ◽  
Megumi Adachi ◽  
Hiroyuki Ito ◽  
Mitsuyuki Matsumoto ◽  
Katsunori Tajinda ◽  
...  

Accumulating evidence points to the association of epilepsy, particularly, temporal lobe epilepsy (TLE), with psychiatric disorders, such as schizophrenia. Among these illnesses, the hippocampus is considered the regional focal point of the brain, playing an important role in cognition, psychosis, and seizure activity and potentially suggesting common etiologies and pathophysiology of TLE and schizophrenia. In the present review, we overview abnormal network connectivity between the dentate gyrus (DG) and the Cornus Ammonis area 3 (CA3) subregions of the hippocampus relative to the induction of epilepsy and schizophrenia. In light of our recent finding on the misguidance of hippocampal mossy fiber projection in the rodent model of schizophrenia, we discuss whether ectopic mossy fiber projection is a commonality in order to evoke TLE as well as symptoms related to schizophrenia.


2019 ◽  
Author(s):  
Wenbiao Xiao ◽  
Chaorong Liu ◽  
Kuo Zhong ◽  
Shangwei Ning ◽  
Rui Hou ◽  
...  

2009 ◽  
Vol 68 (4) ◽  
pp. 356-364 ◽  
Author(s):  
Katja Kobow ◽  
Ina Jeske ◽  
Michelle Hildebrandt ◽  
Jan Hauke ◽  
Eric Hahnen ◽  
...  

2009 ◽  
Vol 111 (6) ◽  
pp. 1237-1247 ◽  
Author(s):  
László Seress ◽  
Hajnalka Ábrahám ◽  
Zsolt Horváth ◽  
Tamás Dóczi ◽  
József Janszky ◽  
...  

Object Hippocampal sclerosis can be identified in most patients with mesial temporal lobe epilepsy (TLE). Surgical removal of the sclerotic hippocampus is widely performed to treat patients with drug-resistant mesial TLE. In general, both epilepsy-prone and epilepsy-resistant neurons are believed to be in the hippocampal formation. The hilar mossy cells of the hippocampal dentate gyrus are usually considered one of the most vulnerable types of neurons. The aim of this study was to clarify the fate of mossy cells in the hippocampus in epileptic humans. Methods Of the 19 patients included in this study, 15 underwent temporal lobe resection because of drug-resistant TLE. Four patients were used as controls because they harbored tumors that had not invaded the hippocampus and they had experienced no seizures. Histological evaluation of resected hippocampal tissues was performed using immunohistochemistry. Results Mossy cells were identified in the control as well as the epileptic hippocampi by using cocaine- and amphetamine-regulated transcript peptide immunohistochemistry. In most cases the number of mossy cells was reduced and thorny excrescences were smaller in the epileptic hippocampi than in controls; however, there was a significant loss of pyramidal cells and a partial loss of granule cells in the same epileptic hippocampi in which mossy cell loss was apparent. The loss of mossy cells could be correlated with the extent of hippocampal sclerosis, patient age at seizure onset, duration of epilepsy, and frequency of seizures. Conclusions In many cases large numbers of mossy cells were present in the hilus of the dentate gyrus when most pyramidal neurons of the CA1 and CA3 areas of the Ammon's horn were lost, suggesting that mossy cells may not be more vulnerable to epileptic seizures than the hippocampal pyramidal neurons.


2001 ◽  
Vol 86 (1-2) ◽  
pp. 84-89 ◽  
Author(s):  
Andrew Billinton ◽  
Virginia H. Baird ◽  
Maria Thom ◽  
John S. Duncan ◽  
Neil Upton ◽  
...  

Neuroscience ◽  
2016 ◽  
Vol 333 ◽  
pp. 140-150 ◽  
Author(s):  
Zsófia Richter ◽  
József Janszky ◽  
György Sétáló ◽  
Réka Horváth ◽  
Zsolt Horváth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document